

LECTURE NOTES

Topic 5: Use of Sequence Control Structure

Learning Outcomes:

(a) Identify the appropriate control structures (sequence, selection, repetition)

INTRODUCTION TO CONTROL STRUCTURES

- 1. Determine the flow of control in a program.
- 2. These control structures allow you to do two things:
 - skip some statements while executing others
 - o repeat one or more statements while some condition is true.
- 3. Types of control structure:
 - sequence
 - selection
 - repetition

1. Sequence Control Structures

Programs are **executed one after the other sequentially** from the beginning to end.

```
# Prompting the user for height and width
height = float(input("Enter the height of the rectangle: "))
width = float(input("Enter the width of the rectangle: "))

# Calculating the area of the rectangle
area = height * width

# Displaying the area of the rectangle
print("The area of the rectangle is:", area)
```

^{*} All statements will be executed (line 1 to 9); none will be skipped.

Example of Sequence Control Structures problems

- 1. Write a python code segment to calculate area of circle.
- 2. Write a program segment that prompt user for their weight and height, calculates their Body Mass Index (BMI), and displays the result.
- 3. Final mark for a student is calculated from the total of 60% of continuous evaluation mark and 40% of final examination mark. Calculate and print the final mark for a student. Write a program segment.
- 4. Write a program segment to calculate the pay price of a meal after being charged with 10% sales tax and 6% service tax.

Example of Sequence Control Structures problems

5. A hotel offers two types of room with different rates in Table 1. The hotel offers a 10% discount on the total room charge. You are going to make a reservation of one Superior room and one Deluxe room for a few nights. Write a program segment to Calculate and display the total room charge that you have to pay.

Room Type	Rate per night (RM)
Superior	160
Deluxe	180

Write a python code segment to calculate area of circle.

IPO Model	
Input	radius
Process	calculate area based on radius
Output	area

Input	radius
Process	calculate area based on radius
Output	area

Pseudocode

start

read radius

area = 3.142 x radius x radius

display area

stop

Pseudocode

start

read radius

area = 3.142 x radius x radius

display area

stop

Program segment

```
radius = float(input("Enter the radius of the circle: "))
```

```
area = 3.142 * radius ** 2
```

```
print("The area of the circle is:", area)
```


Write a program segment that prompt user for their weight and height, calculates their Body Mass Index (BMI), and displays the result.

IPO Model

Input : weight, height

Process: Calculate BMI based on weight and height

Output : BMI

IPO Model

Input : weight, height

Process: Calculate BMI based on weight and height

Output : BMI

Pseudocode

start

read weight, height

BMI = weight / (height * height)

display BMI

stop


```
# Prompting the user for weight and height
weight = float(input("Enter your weight in kilograms: "))
height = float(input("Enter your height in meters: "))

# Calculating BMI
bmi = weight / (height ** 2)

# Displaying the result
```

Output

```
Enter your weight in kilograms: 70
Enter your height in meters: 1.69
Your Body Mass Index (BMI) is: 24.508945765204302
```

print("Your Body Mass Index (BMI) is:", bmi)

Final mark for a student is calculated from the total of 60% of continuous evaluation mark and 40% of final examination mark. Calculate and print the final mark for a student. Write a program segment.

IPO Model	
Input	continuous_evaluation_mark, final_exam_mark
Process	To calculate final mark based on continuous evaluation mark and final exam mark
Output	final_mark

	IPO Model
Input	continuous_evaluation_mark, final_exam_mark
Process	To calculate final mark based on continuous evaluation mark and final exam mark
Output	final_mark

Pseudocode

start

read continuous_evaluation_mark, final_exam_mark

final_mark = (continuous_evaluation_mark * 0.6) + (final_exam_mark * 0.4)

display final_mark

stop

Program Segment

```
# Prompting the user for continuous evaluation mark and final
examination mark
continuous evaluation mark = float(input("Enter the continuous
evaluation mark: "))
final exam mark = float(input("Enter the final examination mark: "))
# Calculating final mark
final mark = (continuous evaluation mark * 0.6) + <math>(final exam mark * 0.6)
0.4)
# Displaying the final mark
print("The final mark for the student is:", final mark)
                                  Output
```

Enter the continuous evaluation mark: 87
Enter the final examination mark: 89
The final mark for the student is: 87.8

Write a program segment to calculate the pay price of a meal after being charged with 10% sales tax and 6% service tax.

	IPO Model
Input	original_price
Process	calculate total_price based on original_price, sales tax and service tax
Output	total_price

IPO Model	
Input	original_price
Process	calculate total_price based on original_price, sales tax and service tax
Output	total_price

Pseudocode

start

read original price

total_price = original_price + (original_price*0.10) + (original_price*0.06)

display total_price

stop

Program segment

```
# Prompting the user for the original price of the meal
original price = float(input("Enter the original price of the meal:
"))
# Calculating the total price including taxes
total price = original price + (original price*0.10) +
(original price *0.06)
```

Displaying the total price
print("The total price of the meal after taxes is:", total price)

A hotel offers two types of room with different rates in Table 1. The hotel offers a 10% discount on the total room charge. You are going to make a reservation of one Superior room and one Deluxe room for a few nights. Write a program segment to Calculate and display the total room charge that you have to pay.

Table1

Room Type	Rate per night (RM)
Superior	160
Deluxe	180

	IPO Model
Input	nights
Process	calculate total_after_discount based on nights and discounted price
Output	total_after_discount

read nights total_after_discount = nights * (160 + 180) * 0.90 display total_after_discount stop

Program segment

```
# Read number of nights
nights = int(input("Enter the number of nights for the
reservation: "))
# Calculating total room charge after discount
total after discount = nights * (160 + 180) * 0.90
# Displaying the total room charge after discount
print ("The total room charge after applying a 10%
```

discount is:", total after discount)

LECTURE NOTES

Topic 5: Use of Sequence Control Structure

Learning Outcomes:

(a) Identify the appropriate control structures (sequence, selection, repetition)

2. Selection Control Structures

Selection Control Structure (Decision Making)

- Allows the program to choose between different options based on conditions.
- Uses if, if-else, and if-elif-else statements.
- Example: "If it rains, take an umbrella; otherwise, wear

sunglasses."

2. Selection Control Structures

Selection Control Structure (Decision Making)

- If you score 100 marks, you get a reward.
- If you spend more than RM100, you get a 10% discount. Otherwise, no discount is given.
- If you return a book late, pay a fine. Otherwise, no fine is needed.
- Checking student grades based on marks:

$$C(60 - 69)$$

3. Repetition Control Structures

Repetition Control Structure (Loops)

- Allows the program to repeat a block of code multiple times.
- Uses **for loop** (fixed repetitions) and **while loop** (repeats until a condition is false).
- Example: "Keep watering the plants every day until they grow."

3. Repetition Control Structures

- 1 Using a for Loop (Fixed Repetitions)
 - **Example: Counting Steps During Exercise**
- A person does 10 jumping jacks every morning.
- Repeats exactly 10 times.
- **Example: Distributing Exam Papers**
- A teacher distributes one paper to each of 30 students.
- Repeats exactly 30 times.
- **Example: Setting an Alarm**
- The school bell rings every hour from 8 AM to 3 PM.
- Repeats exactly 8 times

3. Repetition Control Structures

- 2 Using a while Loop (Repeats Until a Condition is False)
 - **Example: Filling a Water Bottle**
- Keep filling the bottle until it is full.
- Repeats an unknown number of times until the bottle is full.
- **Example: Waiting for a Bus**
- A person waits at the bus stop until the bus arrives.
- Repeats until the bus comes.
- Example: Saving Money for a Goal
- A person saves RM10 every week until they have RM100.
- Repeats until total savings reach RM100.

Identify the appropriate control structure (sequence, selection, repetition) for each of the following scenario.

A program checks if a person's temperature is above 37.5°C. If true, it displays "You have a fever"; otherwise, it says "Normal temperature".

A self-checkout machine keeps scanning items until the user presses the "Pay" button.

A program calculates and displays the total price of three purchased items.

Identify the appropriate control structure (sequence, selection, repetition) for each of the following scenario.

A program prints even numbers from 1 to 100.

A program asks the user to enter two numbers, then calculates and displays the sum.

A program checks if a number entered by the user is positive, negative, or zero and prints the result.