
LECTURE NOTES

Learning Outcomes:

(a) Define types of programming languages, programming
paradigms and language translators

CP115

Topic 4: Python Programming

LECTURE NOTES

○ A programming language is a way to communicate with a
computer.

○ It allows us to write instructions that tell the computer what to
do.

○ These instructions follow a specific syntax (structure) and rules.

CP115

Introduction to Programming Language

PROGRAMMING LANGUAGE

LECTURE NOTES

○ Programming languages are used to build software, games,
websites, and more.

○ Examples of programming languages include Python, Java, C++,
and JavaScript.

○ Each language has its own strengths and is suited for different
tasks.

CP115

Introduction to Programming Language

PROGRAMMING LANGUAGE

LECTURE NOTES

What is Programming Language?
○ A programming language is a formal set of rules used to write

instructions that a computer can understand and execute.

Source: Britannica, 2024

CP115

DEFINITION - Programming Language

PROGRAMMING LANGUAGE

LECTURE NOTES CP115

SECOND
GENERATION

THIRD
GENERATION

FOURTH
GENERATION

FIFTH
GENERATION

Machine
Language

Assembly
Language

High Level
Language

Very High
Level

Language

Natural
Language

Python
C

C++
JAVA

BASIC

SQL
NOMAD
FOCUS

Prolog
Mercury

We are here

PROGRAMMING LANGUAGE

Types of Programming Language:

HIGH-LEVE
L

LOW-LEVEL
FIRST

GENERATION

LECTURE NOTES

➢ A low-level language is a programming language that is
machine-dependent.
● A machine-dependent language runs on only one
particular type of computer.
● These programs are not easily portable to other
types of computers.

CP115

Types of Programming Language:

Low-Level Language

PROGRAMMING LANGUAGE

LECTURE NOTES

Low-Level Language: Machine Language

○ Machine language is defined as a language that consists of
strings of binary digits (1 and 0) to represent instructions to
computer.

○ It is the natural language of a computer.

CP115

To calculate wages = rates * hours in machine language:
100100 010001 // Load (input rates)
100110 010010 // Multiply with hours
100010 010011 // Store (result of wages)

PROGRAMMING LANGUAGE

LECTURE NOTES

Low-Level Language: Machine Language

CP115

Advantages

1.Ready for immediate
execution.

2.Instructions are readily
understood by the
computer.

Disadvantages

1.Machine-dependent.

2.Programs tend to be
lengthy.

3.Coding in machine
language is tedious and
time-consuming.

PROGRAMMING LANGUAGE

LECTURE NOTES

Low-Level Language: Assembly Language

○ Assembly language is the second generation of programming
languages consists of English-like abbreviations.

○ Programmer writes instructions using
symbolic instruction codes. Symbolic
instruction codes are meaningful
abbreviations.

Example: x86, arm a32

CP115

Example:

ADD for addition
CMP for compare
LOAD for load
MULT for multiply

PROGRAMMING LANGUAGE

LECTURE NOTES

Low-Level Language: Assembly Language

CP115

Advantages

1.Instructions are easier
to learn compared to
machine language.

2.Easy to understand and
use. Assembly language
use mnemonics instead of
using binary code.

Disadvantages

1. Machine-dependent.

2. Long and tedious to
write.

PROGRAMMING LANGUAGE

LECTURE NOTES

Low-Level Language:

CP115

Machine Language Assembly Language

10110000 01100001
10110010 01000010
00000001
11100010

MOV AL, 61h
MOV DL, 42h
ADD AL, 1
LOOP

PROGRAMMING LANGUAGE

LECTURE NOTES

➢ A high-level language is a programming language that is closer
to natural language and easier to work with than a low-level
language.

● A high-level language is a programming language that is
machine-independent.

● A machine-independent language can run on many
different types of computers and operating systems.

CP115

Types of Programming Language:

High-Level Language

PROGRAMMING LANGUAGE

LECTURE NOTES

High-Level Language

CP115

PROGRAMMING LANGUAGE

The equation : wages = rate x hours can be written in
Python as:

wages = rate * hours

Examples of high-level language:
Java, C, C++, BASIC, Pascal, FORTRAN (for Scientific),
COBOL (for Business)

LECTURE NOTES

High-Level Language:

CP115

Advantages

1. The English-like
instructions are easier to
learn compare to
low-level language.

2. The instructions can run
on many different types of
computers

Disadvantages

1. Not efficient as low
level languages.

2. Program generally run
slower. (Need to be
translated / compile)

PROGRAMMING LANGUAGE

LECTURE NOTES CP115

PROGRAMMING LANGUAGE

LECTURE NOTES CP115

PROGRAMMING LANGUAGE

Low-Level Language High-Level Language

Consists of binary digits or
English-like abbreviations to form
instructions.

Consists of English-like words to form
instructions.

Machine Language does not need
translator.

Need translator to convert to
low-level language.

Machine dependant. Machine independent.

Difficult to learn, modify and far from
human language.

Easy to learn, modify and close to
human language.

LECTURE NOTES CP115

PROGRAMMING LANGUAGE

QUICK REVIEW

1. State the type of programming language shown above.
2. Give one benefit of writing code in your answer above.

LECTURE NOTES

○ 🧠 A programming paradigm is a way of thinking about and writing

code — like a coding "style" or approach.

○ 💡 Different paradigms (like procedural, object-oriented, and logical) help

solve problems in different ways.

○ 🛠 Programming languages often support one or more paradigms to give

developers flexibility when building software.

CP115

Introduction to Programming Paradigm

PROGRAMMING PARADIGM

LECTURE NOTES

What is Programming Paradigm?
○ A programming paradigm is a fundamental style or approach

to programming that guides how code is written, structured, and
executed.

Source: Britannica, 2024

Types of programming paradigm:

CP115

PROGRAMMING PARADIGM

DEFINITION - Programming Paradigm

PROCEDURAL OBJECT-ORIENTED LOGIC

LECTURE NOTES CP115

Procedural Programming vs Object Oriented Programming

Procedural Programming Object-Oriented Programming

In procedural programming, the
program is divided into small parts
called functions.

In object-oriented programming,
the program is divided into small
parts called objects.

Procedural programming follows a
top-down approach.

Object-oriented programming
follows a bottom-up approach.

Examples:

C, FORTRAN, Pascal, Basic, Python
etc.

Examples:

C++, Java, Python, C#, etc.

PROGRAMMING PARADIGM

LECTURE NOTES CP115

Top-down approach

Bottom-up approach

Object

PROGRAMMING PARADIGM

Class

LECTURE NOTES

○ 🧾 A language translator is a program that converts code written in one

programming language into another (usually machine language).

○ 💻 It helps computers understand and execute code written by humans in

high-level languages like Python, Java, or C++.

○ 🛠 There are three main types: Assembler, Interpreter, and Compiler,

each translating in different ways.

CP115

Introduction to Language Translator

LANGUAGE TRANSLATOR

LECTURE NOTES CP115

DEFINITION - Language translator

What is Language Translator?
○ A language translator is a program that converts instructions

written in one programming language into machine code
Source: Computers for Librarians (Third Edition), 2003

Programming
Language

(Source Code)

Language Translator
(Assembler/

Interpreter/ Compiler)
Machine Code

Execution by
computer

LANGUAGE TRANSLATOR

LECTURE NOTES CP115

Types of Language Translator:

LANGUAGE TRANSLATOR

TRANSLATOR

ASSEMBLER INTERPRETER COMPILER

LECTURE NOTES CP115

LANGUAGE TRANSLATOR

A program that translates assembly language into machine
language.

1. Assembler

LECTURE NOTES CP115

LANGUAGE TRANSLATOR

Examples:-
• NASM (Netwide Assembler)

• MASM (Microsoft Macro Assembler)

• TASM (Turbo Assembler)

• FASM (Flat Assembler)

1. Assembler

LECTURE NOTES

A program that translates translate the program’s high level
instructions line by line into machine language instructions
as the program is running.

CP115

2. Interpreter

LECTURE NOTES

Examples interpreted programming language:
• Python programming language

• Ruby programming language

• Javascript programming language

CP115

2. Interpreter

LECTURE NOTES

A program that translate all of a program’s high-level
instructions into machine language instructions before
running the program

CP115

3. Compiler

LECTURE NOTES

Examples
• Java programming language

• C++ programming language

• C programming language

• Fortran programming language

• ADA programming language

• Pascal programming language

• Kotlin programming language

CP115

3. Compiler

LECTURE NOTES

Learning Outcomes:

(b) State available platforms for writing Python programs

CP115

Topic 4: Python Programming

LECTURE NOTES

The standard implementation of Python is written in portable ANSI C, and it compiles and
runs on virtually every major platform currently in use. As a partial list, Python is available
on:
• Linux and Unix systems
• Microsoft Windows
• Mac OS
• Cloud platform

CP115

Requirements to Use Python

LECTURE NOTES

There are two main types of Python platforms: Online-Based and Local-Based.

● Online-Based platforms allow you to write and run Python code directly in a
web browser, with executions happening remotely on cloud servers.

● Local-Based platforms require installation on your local machine, where
Python code is executed using your device’s own resources.

CP115

Types of Python Platforms

LECTURE NOTES

Your code runs on remote servers (the cloud). You just need a browser and an
internet connection. All processing and file storage typically happen online.

Advantages:

● No setup needed — just open a link and start coding

● Accessible anywhere with an internet connection

● Easy to share and collaborate with others in real-time

● Often includes free computing resources like GPUs (e.g., Google Colab)

CP115

Online-Based Python Platforms

LECTURE NOTES

Limitations:

● Requires stable internet

● May have performance limits (especially with free versions)

● Not ideal for complex software or offline work

CP115

Online-Based Python Platforms

LECTURE NOTES

Google Colab

Google Colab is a free browser-based Python
notebook provided by Google. It lets you write and
execute Python code on cloud servers

Allows you to write code in cells, with outputs
shown below each cell. Supports uploading
datasets and saving notebooks to Google Drive

CP115

Online-Based Python Platforms

LECTURE NOTES

You download and install the software (e.g., PyCharm, Jupyter Notebook). It uses your
computer’s resources to run the Python interpreter and handle files.

Advantages:

● No internet required after installation

● Usually faster and more powerful, especially for large projects

● Fully customizable and extendable with plugins or libraries

● Better control over local files, packages, and environment

CP115

Local-Based Python Platforms

LECTURE NOTES

Limitations:

● Requires installation and setup

● Takes up disk space

● Can be quite technical for beginners to install

CP115

Local-Based Python Platforms

LECTURE NOTES

PyCharm

PyCharm is a professional-grade IDE (Integrated
Development Environment) for Python
development, created by JetBrains. It supports full
software development workflows.

It is a powerful code editor with intelligent
suggestions and refactoring. It also have integrated
debugger, version control, and terminal.

CP115

Local-Based Python Platforms

LECTURE NOTES CP115

Jupyter Notebook

Jupyter Notebook is an interactive web-based
tool for coding in Python. It lets you write code,
add notes, display charts, and run data analysis.

Even though it runs through the browser, it stills
run locally on your computer using your
computer resources

It split your code into cells for easier execution
and experimentation. It also can combine code +
text (Markdown) + output (charts, tables).

LECTURE NOTES CP115

Platforms Comparison

Platform Type Ease of Use Key Features
Google Colab Online Very Easy No setup required, free access to resources

such as CPU and RAM

PyCharm Local Moderate
(Require
setup)

Full-featured IDE with project
management and AI coding assistant

Jupyter
Notebook

Local Moderate
(Require
setup)

Interactive cells with live code and outputs

LECTURE NOTES CP115

Use Cases and Suggested Platforms

Running Python Without Installation

● Suitable for trying out Python without setting up a development
environment.

● Runs entirely in a web browser with no need for local installation.

● Convenient for quick testing and experimentation.

Suggested Platform: Google Colab

LECTURE NOTES CP115

Use Cases and Suggested Platforms

Managing Larger Projects with Multiple Files

● Ideal for structured projects that involve multiple scripts, folders, or
modules.

● Supports features like project navigation, debugging tools, and version
control.

● Suitable for more advanced or long-term development work.

 Suggested Platform: PyCharm

LECTURE NOTES CP115

Use Cases and Suggested Platforms

Interactive Coding with Instant Output

● Supports writing and executing code in smaller, organized cells.

● Provides immediate visual output for each section of code.

● Well-suited for data visualization, exploration, and explanation.

Suggested Platform: Jupyter Notebook

LECTURE NOTES

Learning Outcomes:

c) Identify the components of a Python program (identifiers, variables, reserved
words/keywords, data types, comments, import statements, input statements,
output statements and indentation)

CP115

Topic 4: Python Programming

LECTURE NOTES

❑ Identifiers
❑ Variables
❑ Reserved words/keywords
❑ Data types
❑ Comments
❑ Import statements
❑ Input statements
❑ Output statements
❑ Indentation

CP115

Table of Contents

LECTURE NOTES CP115
IDENTIFIER

Definition of Identifier:-

The name used to identify variables, functions, classes,

modules, and other objects in Python

LECTURE NOTES CP115
IDENTIFIER

1. Can contain letters (a-z, A-Z), digits (0-9), and underscores (_)
o ✅ Valid: my_var, speed1, Calculate_Area
o ❌ Invalid: my-var (hyphens are not allowed)

Rules for Naming Identifiers:

2. Can use underscores but not special characters (@, $, %)
o ✅ Valid: _my_variable, count_1
o ❌ Invalid: my$var, #number

3. Cannot start with a number
• ✅ Valid: age1 = 25, _value = 50
• ❌ Invalid: 1variable = 10 (SyntaxError)

LECTURE NOTES CP115

IDENTIFIER
Rules for Naming Identifiers:

5. Cannot be a reserved word (keyword)
o ❌ Invalid: class, def, if, while, return

4. Case-sensitive
o Variable and variable are different identifiers.
Example:

age = 25

Age = 30

print(age) # Output: 25

print(Age) # Output: 30

LECTURE NOTES CP115

Try this ! Exercise 1

Which of the following is a valid Python identifier?
A. 2name

B. name_2

C. For

D. class-name

IDENTIFIER

Review Activity : Identifier

LECTURE NOTES

• In Python, variables are dynamically typed, 🡪 don’t need to
declare their type before using them.

• The type is determined at runtime.

CP115
VARIABLE

Definition of Variable:-

A name that refers to a memory location where data is

stored.

LECTURE NOTES CP115

VARIABLE

Feature Identifiers Variables

Definition Name of functions, classes, and
variables Name referring to stored data

Purpose Used to identify elements in
code

Stores values that can change
during execution

Example my_function, Student, count x = 10, name = "John"

Keywords Cannot use reserved words Variable names should not be
reserved words

LECTURE NOTES CP115

VARIABLE

Identifiers: my_var, student_name, calculate_total

def calculate_total(price, quantity):

 total = price * quantity # 'total' is a variable
 return total

Variables: price, quantity, result

price = 50

quantity = 3

result = calculate_total(price, quantity)

LECTURE NOTES CP115

Try this ! Exercise 1

Which of the following is NOT a valid variable name in Python?

a) my_var
b) total1
c) break
d) dataSet

VARIABLE

Review Activity : Variable

LECTURE NOTES CP115

Try this ! Exercise 2

What is the purpose of a variable in Python?

a) To reserve memory for loops
b) To perform calculations
c) To store data values
d) To create comments

VARIABLE

Review Activity : Variable

LECTURE NOTES CP115

Try this ! Exercise 3

Is Total_Score and total_score the same variable in Python?

VARIABLE

Review Activity : Variable

LECTURE NOTES

• Also known as keyword.

• These words are fundamental to the language syntax and serve
specific purposes.

CP115
RESERVED WORD

Definition of Reserved Word:-

The special words that have predefined meanings and cannot be

used as identifiers (such as variable names, function names, or

class names)

LECTURE NOTES

• Cannot be used as identifiers – You cannot name your variables, functions,
or classes using reserved words.

• Predefined meanings – Each reserved word has a specific role in Python
syntax.

• Case-sensitive – Python keywords must be written exactly as they are
defined (e.g., True is different from true).

• Fixed list – The number of reserved words may change with new Python
versions.

CP115
RESERVED WORD

Characteristics of Reserved Words:

LECTURE NOTES CP115
RESERVED WORD

A list of some common reserved words in Python:

Reserved Word Meaning

if Used for conditional statements

else Defines an alternative condition

elif Used in multiple condition statements

for Starts a loop that iterates over a sequence

while Starts a loop that runs as long as a condition is true

break Exits the current loop

continue Skips the current iteration of a loop and moves to the next

def Defines a function

LECTURE NOTES CP115
RESERVED WORD

A list of some common reserved words in Python:

Reserved Word Meaning

return Returns a value from a function

class Defines a class

import Imports modules into a program

try Starts a try-except block for handling exceptions

except Catches exceptions in a try-except block

True Boolean value for true

False Boolean value for false

None Represents a null value

LECTURE NOTES CP115

Try this ! Exercise 1

Which of these is a Python reserved word (keyword)?

a) name
b) value
c) def
d) var

RESERVED WORD

Review Activity : Reserved Word

LECTURE NOTES CP115

Try this ! Exercise 2

What will happen if you use a reserved word like if as a variable name?

a) It will run normally
b) It will be ignored by Python
c) It will cause an error
d) It will change the value of if

RESERVED WORD

Review Activity : Reserved Word

LECTURE NOTES CP115

DATA TYPES

 Types

Integer (int)

Float (float)
Boolean (bool)

String (str)

Definition of Data Type:-

The kind of values a variable can hold.

LECTURE NOTES CP115

DATA TYPES

• Represents whole numbers (positive, negative, or zero) without
decimals.

• Maximum size is only limited by the memory of the system.

Integer (int)

Syntax

variable_name = integer_value

Example

age = 25
year = 2024
count = -10
print(age, year, count)

LECTURE NOTES CP115

DATA TYPES

• Represents real numbers (numbers with a decimal point).

• Python does not have a double data type like Java or C++, as float in
Python already provides double-precision floating points.

Syntax

variable_name = float_value

Example

pi = 3.14159
price = 19.99
temperature = -5.5
print(pi, price, temperature)

 Float (float)

LECTURE NOTES CP115

DATA TYPES

• Represents truth values: True or False (case-sensitive).
• Commonly used in conditions and comparisons.
• Booleans are essentially integers (True = 1, False = 0) and can be used in

arithmetic operations.

Syntax

variable_name = True

variable_name = False

Example

is_raining = True

is_sunny = False

print(is_raining)

print(is_sunny)

Boolean (bool)

LECTURE NOTES CP115

DATA TYPES

• Represents a sequence of characters (text data).

• Strings can be enclosed in single ('), double (") or triple (''' """) quotes

• Strings are immutable (cannot be changed after creation).

Syntax

Double quotes
variable_name = "string_value"
Single quotes
variable_name = 'string_value’
Triple quotes
variable_name = """multi-line string"""

Example

name = "Alice"
message = 'Hello, World!'
paragraph = """This is a
multi-line string."""
print(name)
print(message)
print(paragraph)

String (str)

LECTURE NOTES CP115

DATA TYPES

 3 important function or method relate with string

String (str)

len() function upper() method lower() method

LECTURE NOTES CP115

DATA TYPES

• len() is a built-in function in Python, not a method.
• It returns the number of characters in a string (including spaces and

punctuation).

String (str)

len()function - Function to Get String Length

Syntax

length = len(string_variable)

Example

text = "Hello World"
print(len(text)) # Output: 11
*(Includes the space between "Hello" and "World")

LECTURE NOTES CP115

DATA TYPES

• upper() is a string method (not a function).
• It converts all lowercase letters in a string to uppercase.
• It does not change the original string (strings are immutable in Python).

String (str)

Syntax

uppercase_text = string_variable.upper()

Example

message = "hello"

print(message.upper())

Output: HELLO

upper() method - Method to Convert String to Uppercase

LECTURE NOTES CP115

DATA TYPES

• lower() is also a string method.
• It converts all uppercase letters to lowercase.
• Like upper(), it does not modify the original string

String (str)

Syntax

lowercase_text = string_variable.lower()

Example

word = "PYTHON"

print(word.lower())

Output: python

lower() method - Method to Convert String to Lowercase

•.

LECTURE NOTES CP115

DATA TYPES

String (str)

•.

Feature len() (Function) upper() & lower()(Methods)

Type Built-in / Pre-defined
Function String Methods

Purpose Counts characters Modifies case of letters

Applies to Strings, lists, etc. Only strings

Return Type Integer String

Difference Between len() and upper()/lower()

LECTURE NOTES CP115

DATA TYPES

•.

Type Conversion (Casting) Syntax

• To convert between data types, use the following functions:

int_value = int(3.5) # Converts float to int (3)

float_value = float(10) # Converts int to float (10.0)

str_value = str(100) # Converts int to string ("100")

bool_value = bool(1) # Converts 1 to True

LECTURE NOTES CP115

DATA TYPES

•.

Type Conversion (Casting) Syntax

num_str = "50"

num_int = int(num_str) # Convert string to int
print(num_int) # Output: 50

Example

exceptional

LECTURE NOTES CP115
•.

type() function

• In Python, the built-in type() function is used to determine the type of an
object or to create a new type (class) dynamically.

Syntax

type(object)

• object → The variable or value whose type you want to check.

• ✅ Returns the type/class of the object.

LECTURE NOTES CP115
•.

type() function
Example

Integer

Float

String

Boolean

• value is assigned to a variable
first, then checked with type():

• determine the data type of an object

LECTURE NOTES CP115

Try this ! Exercise 1

Which of the following is a float value?

A) "3.5"

B) 3.5

C) 3

D) '3'

DATA TYPE

Review Activity : Data Type

LECTURE NOTES CP115

Try this ! Exercise 2

What will be the output of this code?
x = 10

print(type(x))

A) <class 'float'>

B) <class 'int'>

C) <class 'bool'>

D) <class 'str'>

DATA TYPE

Review Activity : Data Type

LECTURE NOTES CP115

Try this ! Exercise 3

What will be the output of this code?

name = "Ali"

print(len(name))

A) 2

B) 3

C) 4

D) 5

DATA TYPE

Review Activity : Data Type

LECTURE NOTES CP115

Try this ! Exercise 4

name = "Aina"

age = 17

height = 160.5

is_student = True

print("Name:", name.upper())

print("Length of name:", len(name))

print("Age:", age)

print("Height:", height)

print("Is a student:", is_student)

DATA TYPE

Review Activity : Data Type

a) State the data type of the following
variables:
i. name

ii. age

iii. height

iv. is_student

LECTURE NOTES CP115

Try this ! Exercise 4

name = "Aina"

age = 17

height = 160.5

is_student = True

print("Name:", name.upper())

print("Length of name:", len(name))

print("Age:", age)

print("Height:", height)

print("Is a student:", is_student)

DATA TYPE

Review Activity : Data Type

b) What is the output of name.upper()?

LECTURE NOTES CP115

Try this ! Exercise 4

name = "Aina"

age = 17

height = 160.5

is_student = True

print("Name:", name.upper())

print("Length of name:", len(name))

print("Age:", age)

print("Height:", height)

print("Is a student:", is_student)

DATA TYPE

Review Activity : Data Type

c) What is the output of len(name) ?

LECTURE NOTES CP115
COMMENT

Definition of Comment:-

A line of text within the code that explain what the code is doing

and is ignored by the interpreter during execution.

When writing comments:

• The # character should be followed by a single space. Ex: # End of menu is easier to read
than #End of menu.

• Comments should explain the purpose of the code, not just repeat the code itself. Ex: # Get
the user’s preferences is more descriptive than # Input item1 and item2

LECTURE NOTES CP115
COMMENT

Purposes of Comment:-

1. Code Documentation – Helps explain the purpose of code for other
developers.

2. Debugging Assistance – Comments can be used to temporarily
disable lines of code for testing.

3. Increasing Readability – Well-commented code is easier to
understand and maintain.

4. Collaboration – Makes it easier for multiple developers to work on
the same project.

5. Docstrings for APIs – Helps generate documentation for libraries
and frameworks.

LECTURE NOTES CP115
COMMENT

Comments can be written

before a line of code
This is a comment

print("Hello, World!")

can be placed at the end of a line, and Python will ignore the rest of the line
print("Hello, World!") # This is a comment

LECTURE NOTES CP115
COMMENT

This is a single-line comment
x = 10 # Assigning value to x
print(x) # Printing x

Python has two main types of comments:

Single-line Comments

• Uses the # symbol.

• Everything after # on that line is ignored by the interpreter.

• Used for short explanations or notes.

LECTURE NOTES CP115
COMMENT

" " "
This is a multi-line comment.
It is written using triple quotes.
This program is to print
Hello, World!
" " "
print("Hello, World!")

Multi-line (Block) Comments
• Uses triple quotes (' ' ' or " " ") as multi-line strings, which is often called

docstrings.

Python has two main types of comments:

LECTURE NOTES CP115

Try this ! Exercise 1

The main purpose of writing comments is to _____.
a. avoid writing syntax errors
b. explain what the code does
c. make the code run faster

COMMENT

Review Activity : Comment

LECTURE NOTES CP115

Try this ! Exercise 2

Which symbol is used for comments in Python?

COMMENT

Review Activity : Comment

LECTURE NOTES CP115

Table of Contents

Identifiers
Variables
Reserved words/keywords
Data types
Comments

❑ Import statements
❑ Input statements
❑ Output statements
❑ Indentation

Learning Outcomes:

c) Identify the components of a Python program (identifiers, variables, reserved
words/keywords, data types, comments, import statements, input statements,
output statements, indentation)

CP115

Topic 4: Python Programming

LECTURE NOTES

CP115

Table of Contents

Identifiers
Variables
Reserved words/keywords
Data types
Comments

❑ Import statements
❑ Input statements
❑ Output statements
❑ Indentation

LECTURE NOTES

CP115

IMPORT STATEMENT

Purpose of Import Statement:-

to bring in modules and their functionalities into the

program.

• This allows you to use pre-defined functions and constants without
having to define them yourself.

LECTURE NOTES

CP115

IMPORT STATEMENT

In the case of mathematical operations, Python provides the math
module, which includes important constants and functions such as:

math.pi → The mathematical constant π (pi).

math.pow(x, y) → Raises x to the power of y.

math.sqrt(x) → Computes the square root of x.

LECTURE NOTES

CP115

IMPORT STATEMENT

Importing the math Module

Syntax

import math

LECTURE NOTES

CP115

IMPORT STATEMENT

Syntax

import math

print(math.pi) # Using pi

Example

import math # Import the entire math module

radius = 7

Using math.pi to calculate circumference
circumference = 2 * math.pi * radius

print("Circumference of the circle:",
circumference)

math.pi

• math.pi is a mathematical constant representing the value of π
(pi), approximately 3.141592653589793.

Import the Entire math Module

LECTURE NOTES

CP115

IMPORT STATEMENT

Syntax

import math

print(math.pow(x,y)) # Using pow()

Example

import math # Import the entire math module

base = 3
exponent = 4

Using math.pow() to calculate 3^4

result = math.pow(base, exponent)

Using string concatenation (+)
print(base, "raised to the power of", exponent,
"is:", result)

math.pow(x,y)

• It always returns a floating-point number.

Import the Entire math
Module

Answer : 3 raised to the power of 4 is:
81.0

LECTURE NOTES

CP115

IMPORT STATEMENT

Syntax

import math

print(math.sqrt(x)) # Using sqrt()

Example

import math # Import the entire math module

number = 64

Using math.sqrt() to find the square root of 64
square_root = math.sqrt(number)

Displaying the result
print("The square root of", number, "is:",
square_root)

math.sqrt(x)

• The argument x must be non-negative (≥ 0).
• The result is always a floating-point number.

Import the Entire math
Module

Answer : The square root of 64 is: 8.0

LECTURE NOTES

CP115

INPUT STATEMENT

input()function

allows your Python program to interact with the user by accepting

keyboard input to display text, numbers, or other data types on the

screen.

Syntax

variable = input(“prompt message”)

LECTURE NOTES

CP115

Syntax

variable = input(“prompt message”)

• input() is a built-in function.

• The "Prompt message" is optional, but commonly used to guide the
user.

• The user input is always returned as a string (data type: str).

LECTURE NOTES
INPUT STATEMENT

CP115

Example

name = "Aina"

• The value typed by the user is returned as a string:

Example

age = "25" # still a string

• if the user types a number like 25, the result is:

check input data type

LECTURE NOTES
INPUT STATEMENT

CP115

Example

age = int(input("Enter your age: ")) # user types 25 → age = 25 (int)

• Convert to Integer (casting input value from str to int)

Example

price = float(input("Enter the price: ")) # user types 19.99 → price =
19.99 (float)

• Convert to Float

Convert the Input String to the Correct Data Type

LECTURE NOTES
INPUT STATEMENT

CP115

Common Mistakes

Mistake Explanation

Forgetting to convert input All input is a string, so "5" + "3" becomes "53" instead of
8.

Not handling invalid input If user types text instead of a number, int(input()) will
crash with ValueError.

No prompt message User doesn’t know what to type. Always give a clear
prompt.

LECTURE NOTES
INPUT STATEMENT

CP115

Summary

Feature Description

Function name input()

Returns Always returns str

Used for Accepting keyboard input from user

Prompt Optional message inside the function

Conversion Use int(), float() for numeric
values

Blocking Program waits until user presses Enter

LECTURE NOTES
INPUT STATEMENT

• The most commonly used output function in Python is the print()
function.

CP115

Function of Output Statement:-

to display data or messages to the user.

LECTURE NOTES
OUTPUT STATEMENT

CP115

print()function

to display text, numbers, or other data types on the screen.

Syntax

print(value1, value2, ..., sep=' ', end='\n')

LECTURE NOTES
OUTPUT STATEMENT

Components of the print()function

1. value1, value2, ... → The values to be printed. These can be strings,
numbers, variables, or expressions.

2. sep=' ' (optional) → Specifies the separator between multiple values
(default is a space " ").

3. end='\n' (optional) → Specifies what to print at the end of the
statement (default is a newline '\n').

CP115

print()function

LECTURE NOTES
OUTPUT STATEMENT

CP115

print()function

Example 1 : Printing a Simple String

print("Hello, World!")

Output

Hello, World!

LECTURE NOTES
OUTPUT STATEMENT

CP115

print()function

Example 2 : Printing Multiple Value

print("Hello", "Python", "World")

Output

Hello Python World

LECTURE NOTES
OUTPUT STATEMENT

CP115

print()function

Example 3 : Using sep Parameter (separator)

print("Hello", "Python", "World", sep="-")

Output

Hello-Python-World

LECTURE NOTES
OUTPUT STATEMENT

CP115

print()function

Example 5 : Printing Variables

name = "Alice"

age = 25

print("Name: ", name, “ Age: ", age)

Output

Name: Alice Age: 25

LECTURE NOTES
OUTPUT STATEMENT

CP115

print()function

Example 6: Printing with f-strings (formatted strings)

name = "Alice"

age = 25

print(f"My name is {name} and I am {age} years old.")

Output

My name is Alice and I am 25 years old.

LECTURE NOTES
OUTPUT STATEMENT

CP115

Output statements

print("Hello World") Hello World

print("Hello", "how are you?", sep="---") Hello---how are you?

print(25+25) 50

x = ("apple", "banana", "cherry")

print(x)

('apple', 'banana', 'cherry')

LECTURE NOTES
OUTPUT STATEMENT

• Unlike other programming languages (such as Java or C++) that use
curly braces {} to define blocks of code, Python relies on indentation to
determine the grouping of statements.

CP115
INDENTATION

Definition of Indentation:-

use of whitespace (spaces or tabs) at the beginning of a

line to define the structure of the code.

LECTURE NOTES

Defines Code Blocks

• In Python, indentation is used to indicate blocks of code, such as loops,
functions, and conditionals.

CP115
INDENTATION

Importance of Indentation

Example

if True:

 print("This is inside the if statement")

print("This is outside the if statement")

LECTURE NOTES

CP115
INDENTATION

Importance of Indentation

python

Ensures Readability

• Proper indentation makes code more readable and easier to understand.

Maintains Consistency

• Python enforces a consistent indentation style, which helps developers write
cleaner and more structured code.

LECTURE NOTES

Avoids Syntax Errors

• Since indentation is mandatory in Python, incorrect indentation leads to
IndentationError.

CP115
INDENTATION

Importance of Indentation

Example of incorrect indentation:

if True:

print("Hello") # This will cause an IndentationError

python

LECTURE NOTES

CP115
INDENTATION

Examples of Improper Indentation

Example of Indentation Error in an if Statement

age = 18

if age >= 18:

print("You are allowed to vote") # No indentation, causes IndentationError

python

No Indentation

LECTURE NOTES

CP115
INDENTATION

Examples of Improper Indentation

Example of Indentation Error in a for.. Loop

for i in range(5):

print(i) # No indentation, causes IndentationError

python

No Indentation

LECTURE NOTES

CP115
INDENTATION

Examples of Improper Indentation

Example of Indentation Error in a Function

def greet():

print("Hello, World!") # No indentation, causes IndentationError

greet()

python

No Indentation

LECTURE NOTES

CP115
INDENTATION

Examples of Improper Indentation

Example of Mixing Spaces and Tabs (Bad Practice)

def add(a, b):

 result = a + b # Indented using spaces
result += 1 # Indented using a tab (causes error)
 return result

python

LECTURE NOTES

CP115
INDENTATION

Python Indentation Rules

python

1. Use 4 spaces per indentation level (recommended by PEP 8).

2. Avoid mixing spaces and tabs to prevent errors.

3. Ensure all statements in a block have the same indentation.

LECTURE NOTES

CP115

Table of Contents

Identifiers
Variables
Reserved words/keywords
Data types
Comments
Import statements
Input statements
Output statements
Indentation

LECTURE NOTES

LECTURE NOTES

Learning Outcomes:

(e) Identify the use of assignment and arithmetic operators. (1st hour)

CP115

Topic 4: Python Programming

LECTURE NOTES CP115

What is an Operator?

A symbol of the programming language, which is able to
operate on the values.

LECTURE NOTES CP115

What is an Expression?

The combination of variables, literals, operators, and
parentheses.

LECTURE NOTES CP115

● Here's a list of different types of Python operators.

LECTURE NOTES

● The assignment operation is one of the most important operations.

● Assignment operators in Python are used to store or assign a value to a
variable for later use.

● They allow programmers to perform different types of operations and
store the results in variables.

● A statement can set a variable to a value using the assignment operator
(=).

 ** Note that this is different from the equal sign of mathematics.

CP115
ASSIGNMENT OPERATORS

Assignment Operators

LECTURE NOTES

Examples:

age = 6

birth = "May 15"

• The left side of the assignment statement is a variable, and
• the right side is the value the variable is assigned.

CP115
ASSIGNMENT OPERATORS

LECTURE NOTES

● The simplest form of an assignment statement is the following:

CP115
ASSIGNMENT OPERATORS

variable_name = value

Any Python variable name,
such as totalIncome or
taxRate.

Any Python expression, such as
" " * 10 + "Python"

LECTURE NOTES

Example

Here, = is an assignment operators that assigns 5 to x.

CP115
ASSIGNMENT OPERATORS

x is the variable name

5 is the value being stored in x

LECTURE NOTES
IMPORTANT NOTES !

� One equal sign (=) is used for assignment

� Do not confuse it with == which is used for comparison

CP115
ASSIGNMENT OPERATORS

LECTURE NOTES
IMPORTANT NOTES !

� You can assign different types of data

x = 10 # Integer

pi = 3.14 # Float / Double

name = "Mira" # String

is_student = True # Boolean

CP115
ASSIGNMENT OPERATORS

LECTURE NOTES
IMPORTANT NOTES !

� Variables can be reassigned

CP115
ASSIGNMENT OPERATORS

How??

• A variable is created the first time it is assigned a value.

• Assigning a value to an existing variable replaces the previously
stored value.

LECTURE NOTES
IMPORTANT NOTES !

� Multiples assignments are also allowed :
a. Assign the same value to multiple variables

 a = b = c = 0

print(a, b, c)

b. Assign multiple values to multiples variables

x, y, z = 1, 2, 3

print(x, y, z)

CP115
ASSIGNMENT OPERATORS

Output : 0 0 0

Output : 1 2 3

LECTURE NOTES CP115
ARITHMETIC OPERATORS

• An arithmetic operators are used to perform mathematical operations.

Example:

+ , - , /, *, %, **, //

• An arithmetic expression consists of operands and operators combined
in a manner

Example:

result = 3 + 4 * 2

LECTURE NOTES CP115
ARITHMETIC OPERATORS

Operator Meaning Syntax

** Exponentiation a ** b

* Multiplication a * b

/ Division a / b

// Quotient or Floor division a // b

% Remainder or modulus a % b

+ Addition a + b

- Subtraction a - b

Arithmetic Operators

LECTURE NOTES CP115
ARITHMETIC OPERATORS

Precedence Rules
Operation Precedence Associativity Description

Exponentiation (**) Highest Right to Left Evaluated first

Unary Negation (-value) High Right to Left Evaluated before multiplication and
division

Multiplication, Division,
Remainder Medium Left to Right

Addition, Subtraction Low Left to Right Evaluated before addition and
subtraction

Assignment (=, +=, etc.) Lowest Right to Left

Parentheses () Overrides All — Evaluated after
multiplication/division

LECTURE NOTES CP115
ARITHMETIC OPERATORS

Precedence Rules
Operation Example / Notes

Exponentiation (**) 2 ** 3 ** 2 → 2 ** (3 ** 2)

Unary Negation (-value) -5 * 2 → (-5) * 2

Multiplication, Division,
Remainder 10 * 2 / 5 % 3

Addition, Subtraction 4 + 3 - 1

Assignment (=, +=, etc.) x = y = 10 assigns 10 to both y and x

Parentheses () (3 + 2) * 4 forces addition first

• Operations with equal precedence
are usually left to right.

• Exceptions: ** and = are right to
left.

• Use parentheses to make
evaluation order explicit.

LECTURE NOTES CP115
ARITHMETIC OPERATORS

Examples of arithmetic expressions and their values

LECTURE NOTES CP115
ARITHMETIC OPERATORS

• Mixing integers and floating-point values in an arithmetic expression
yields a floating-point value.

Example:

If an expression contains both int and float, the result will always be
a float.

a = 5 # int
b = 2.0 # float

print(a + b) # 7.0 (int + float → float)
print(a * b) # 10.0
print(a / b) # 2.5
print(a // b) # 2.0 (floor division but result is float)

LECTURE NOTES CP115

● Strings do not support any arithmetic operations.
● ‘+’ stands for the concatenation of the string. It is not the arithmetic

addition.

● For example :
Output :

ARITHMETIC OPERATORS

LECTURE NOTES CP115

Example 1
Output :

ARITHMETIC OPERATORS

LECTURE NOTES CP115

Example 2
Output :

ARITHMETIC OPERATORS

LECTURE NOTES CP115

Example 3 : Multplication

ARITHMETIC OPERATORS

LECTURE NOTES CP115

You can also multiply a string by a number (useful in formatting) :

ARITHMETIC OPERATORS

LECTURE NOTES CP115

Example 4
Output :

ARITHMETIC OPERATORS

Pythons always calculates the RIGHT SIDE FIRST, then show or stores the result.

LECTURE NOTES CP115

TRY THIS !

Output :

ARITHMETIC OPERATORS

LECTURE NOTES

TRY THIS !

CP115

What is the expected output of the following snippet?

print(9 % 6 % 2)

print((2 ** 4), (2 * 4.), (2 * 4))

print((-2 / 4), (2 / 4), (2 // 4), (-2 // 4))

print((2 % -4), (2 % 4), (2 ** 3 ** 2))

(a)

(b)

ARITHMETIC OPERATORS

LECTURE NOTES

ANSWER TRY THIS !

CP115

What is the expected output of the following snippet?

print(9 % 6 % 2)

print((2 ** 4), (2 * 4.), (2 * 4))

print((-2 / 4), (2 / 4), (2 // 4), (-2 // 4))

print((2 % -4), (2 % 4), (2 ** 3 ** 2))

(a)

(b)

Output :

ARITHMETIC OPERATORS

LECTURE NOTES

LETS CALCULATE THE FINAL EXAM SCORE AVERAGE :

CP115
ARITHMETIC OPERATORS

LECTURE NOTES

Learning Outcomes:

(e) Identify the use of assignment and arithmetic operators. (2nd hour)

CP115

Topic 4: Python Programming

LECTURE NOTES
Combining Assignment and Arithmetic

CP115
COMBINING OPERATORS

• In Python, you can combine arithmetic and assignment.

• For example, the instruction

total += cans is a shortcut for total = total + cans

total *= 2 🡪 total = total * 2

• Many programmers find this a convenient shortcut especially when
incrementing or decrementing by 1:
count += 1

LECTURE NOTES

A list of different assignment operators available in Python.

CP115
COMBINING OPERATORS

Operator Equivalent Expression Description

+= x = x + y Addition assignment

-= x = x - y Subtraction assignment

*= x = x * y Multiplication assignment

/= x = x / y Division assignment (float)

//= x = x // y Floor division assignment

%= x = x % y Modulus assignment

**= x = x ** y Exponentiation assignment

LECTURE NOTES

Example 1 : Assign values and perform basic arithmetic

CP115

Output : 7

COMBINING OPERATORS

LECTURE NOTES

Example 2 : Assign values and perform basic arithmetic

CP115

Output : 3

COMBINING OPERATORS

LECTURE NOTES

Example 3 : Assign values and perform basic arithmetic

CP115

Output : 10

COMBINING OPERATORS

LECTURE NOTES

Example 4 : Assign values and perform basic arithmetic

CP115

Output : 2.5

COMBINING OPERATORS

LECTURE NOTES

Example 5 : Assign values and perform basic arithmetic

CP115

Output : 25

COMBINING OPERATORS

LECTURE NOTES CP115

✔ Assignment always stores the LATEST value

Example 7 (with multiple operations) :

Output : 6

COMBINING OPERATORS

LECTURE NOTES CP115

 Try this :

Output :

COMBINING OPERATORS

LECTURE NOTES

Example 6:

Example 7 :

CP115

Output :

Output :

COMBINING OPERATORS

LECTURE NOTES

Example 8 :

CP115

Output :

COMBINING OPERATORS

LECTURE NOTES CP115

Output :

Correct code :

•"

• a = "guru" → a is a string
• b = 99 → b is an integer
• str(99) → converts the number 99 into a string "99"
• a + str(99) → joins (concatenates) the string "guru" with "99" → result is "guru99

In Python, you CANNOT directly add a string and a number. You must convert the
number to a string first using str().

COMBINING OPERATORS

LECTURE NOTES
a) What is the output of the following snippet?

CP115

Output :

COMBINING OPERATORS

LECTURE NOTES

SUMMARY

CP115
COMBINING OPERATORS

TYPE OF OPERATOR OPERATORS

Assignment Operators = += -= /= *= %= **= //=

Arithmetic Operators + - / * % ** //

