

Topic 3: Design Solutions

Learning Outcomes:

(a) Define algorithm, pseudocode and flowchart. (1st hour)

Example of algorithms

- Facial recognition algorithm
- Online advertisement recommendation
 - o Often if you search for a product, more product of the same category will appear
- Social media recommendation

Example of algorithms in daily life

Waking up going to class
Preparing an instant noodle
Preparing a cup of coffee

*Note that there are varieties of ways in achieving the same output

^{*}It can be very simple or super complex depending on how you think

Definition of an algorithm

An algorithm is a set of step-by-step instructions to solve a given problem.

Algorithm representation

An algorithm can be represented either

- Pseudocode
- Flowchart

Pseudocode vs Flowchart

- Informal language using English like language to design algorithms
- A notation resembling a simplified programming language, used in program design
- · A graphical representation of a algorithm in relation to its sequence of functions
- Special-purpose symbols connected by arrows

□ Sequence Control Structure

- A series of actions that are **sequentially executed** in the order they are written.

(**example**: Calculate sum of two numbers)

Selection Control Structure

- Decide which statements to execute based on a condition
- Defines two courses of action depending on the **outcome** of a **condition**. (**example**: Determine "Pass" or "Fail" based on grade entered)

■ Repetition/ Looping / Iteration Control Structure

- used to tell a program to execute statements repeatedly
- Specifies a block of one or more statements that are **repeatedly** executed until a condition is satisfied.

(example: Display "Hello" for 10 times)

Example 1: Algorithm example in daily life

Problem statement: Preparing an instant noodle

Pseudocode

Flowchart

Start

Get bowl

Get noodle

Put noodle into bowl

Add hot water into bowl

Add additive

Serve

End

Example 2: Algorithm example in daily life

Problem statement: If burger is more expensive than nasi lemak, choose nasi lemak (selection)

Flowchart Pseudocode Start Start Read pricenasilemak, Get pricenasilemak priceburger Get priceburger false if priceburger > pricenasilemak priceburger>pricenasilemak print "nasilemak" else true print print print "burger" "nasilemak" "burger" End Start

Example 3: Algorithm example in daily life

Problem statement: What do you do everyday?

Start

while weekday

Wake up

Take a shower

Go to class

Sleep

Repeat until end of weekday

End

Basic Flowchart component

Capsule/Ellipse	Used to represent start-stop OR begin-end
Arrow	Indicates the flow of the algorithm
Parallelogram	Represents an input or output
Rectangle	Represents a process
Diamond	Indicates a decision

Topic 3: Design Solutions

Learning Outcomes:

(a) Define algorithm, pseudocode and flowchart. (2nd hour)

Problem statement 1 (Sequence control structure)

Find the sum of three numbers.

IPO model

Problem statement 1 (Sequence control structure)

Find the sum of three numbers.

IPO model

Input: number1, number2, number3

Process: Calculate the sum based on number1, number2 and number3.

Output:sum

Pseudocode

Problem statement 1 (Sequence control structure)

Find the sum of three numbers.

IPO model

Input: number1, number2, number3

Process: Calculate the sum based on number1, number2 and number3.

Output:sum

Pseudocode

Start
Read number1, number2, number3
sum = number1 + number2 + number3
Print sum
Stop

Problem statement 1 (Sequence control structure)

Find the sum of three numbers.

Pseudocode	Flowchart
Start Read number1, number2, number3 sum = number1 + number2 + number3 Print sum Stop	

Problem statement 1 (Sequence control structure)

Find the sum of three numbers.

Problem statement 2 (Sequence control structure)

Find the average of three numbers.

IPO model

Problem statement 2 (Sequence control structure)

Find the average of three numbers.

IPO model

Input: number1, number2, number3

Process: Calculate the average based on number1, number2 and number3.

Output: average

Pseudocode

Problem statement 2 (Sequence control structure)

Find the average of three numbers.

IPO model

Input: number1, number2, number3

Process: Calculate the average based on number1, number2 and number3.

Output: average

Pseudocode

Start
Read number1, number2, number3
average = (number1 + number2 + number3)/3
Print average
Stop

Problem statement 2 (Sequence control structure)

Find the average of three numbers.

Pseudocode	Flowchart
Start Read number1, number2, number3 average = (number1 + number2 + number3)/3 Print average Stop	

Problem statement 2 (Sequence control structure)

Find the average of three numbers.

Problem Statement 3

Identify the input, process and output for the given problem statement.

The program will calculate mean of 5 tests mark

Input: test1, test2, test3, test4, test5

Process:

- 1. Calculate total based on test1, test2, test3, test4, test5
- 2. Calculate mean based on test1, test2, test3, test4, test5

Output : mean

Example Sequence Pseudocode	Example Sequence Flowchart
Start Read test1, test2, test3, test4, test5 mean = (test1 + test2 + test3 + test4 + test5) ÷ 5.0 Print mean Stop	Start

Problem Statement 4

The program will find the square of a given number.

Problem Analysis/ IPO Model	Example Sequence Pseudocode	Example Sequence Flowchart
Input: number V	Start read number square = number x number	Start
Process : Calculate square based on number	print <i>square</i> Stop	read number
Output : square	*the formula must be a written in full, without superscript y	print square
		Stop

Problem statement 5 (Selection control structure)

Determine the smaller number between two numbers.

IPO model

Problem statement 5 (Selection control structure)

Determine the smaller number between two numbers.

IPO model

Input: number1, number2

Process: Determine the smaller number based on number1 and number2.

Output:smaller

Pseudocode

Problem statement 5 (Selection control structure)

Determine the smaller number between two numbers.

IPO model

Input: number1, number2

Process: Determine the smaller number based on number1 and number2.

Output:smaller

Pseudocode

```
Start
Read number1, number2
if number1 < number2
smaller = number1
else
smaller = number2
Print smaller
Stop
```


Problem statement 5 (Selection control structure)

Determine the smaller number between two numbers.

Pseudocode	Flowchart
Start	
Read number1, number2	
if number1 < number2	
smaller = number1	
else	
smaller = number2	
Print smaller	
Stop	

Problem statement 5 (Selection control structure)

Determine the smaller number between two numbers.

Problem statement 6 (Selection control structure)

Determine whether the number is positive or not positive.

IPO model

Input: number

Process: Determine the message "Number is positive" or "Number is not

positive" based on number.

Output: "Number is positive" or "Number is not positive"

Pseudocode

```
Start
Read number
if number > 0
Print "Number is positive"
else
Print "Number is not positive"
Stop
```


Flowchart example 6

```
Start
Read number
if number > 0
Print "Number is positive"
else
Print "Number is not positive"
Stop
```


Repetition: Counter controlled

In **Counter-Controlled Repetition**, the number of loops that need to be executed is known (either specified in the question or determined by the user), and it depends on the value specified in the condition.

IP	O Analysis General Format	Pseudocode General Format	
Input	input for times	Start counter initialization	
Process	Repeat calculate output based on input for times	while (condition) statement block counter increment/decrement end while	
Output	output for times	next action (after the loop has ended) Stop	
		*The statement(s) will be executed repeatedly until the condition is False (F)	
		*Use correct indentation. Avoid writing actions from the same starting line of Start and Stop.	
		Note: end while is used to indicate the end of an if block. The condition (Boolean expression) must be written in bracket().	

Repetition: Counter controlled (Other approach for IPO)

In **Counter-Controlled Repetition**, the number of loops that need to be executed is known (either specified in the question or determined by the user), and it depends on the value specified in the condition.

IPO Analysis General Format		Pseudocode General Format	
Input	input	Start counter initialization	
Process	Repeat calculate output based on input for times	while (condition) statement block counter increment/decrement end while	
Output	output	next action (after the loop has ended) Stop	
		*The statement(s) will be executed repeatedly until the condition is False (F)	
		*Use correct indentation. Avoid writing actions from the same starting line of Start and Stop.	
		Note: end while is used to indicate the end of an if block. The condition (Boolean expression) must be written in bracket().	

Repetition: Counter controlled - Counter controlled

Problem statement 7 (Repetition control structure) - Counter controlled

The program calculate BMI for 5 persons

IPO Analysis	Pseudocode	Flowchart
Input : weight, height for 5 times Process : Repeat calculate BMI based on weight and height for 5 times Output : BMI for 5 times	Start counter = 0 while (counter < 5) read weight, height BMI = weight ÷ (height x height) display BMI counter = counter + 1 end while Stop Note: To ensure the loops are repeated for 5 times: -if the counter starts with 0, the condition is while (counter < 5) -if the counter starts with 1, the condition is while (counter ≤ 5) @ while (counter < 6)	counter = 0 while (counter < 5) T read weight, height BMI = weight + (height x height) display BMI counter = counter + 1

Problem statement 7 (Repetition control structure)(Other approach for IPO)

The program calculate BMI for 5 persons

IPO Analysis	Pseudocode	Flowchart
Input : weight, height Process :	Start counter = 0 while (counter < 5) read weight, height	Start counter = 0
Repeat calculate BMI based on weight and height for 5 times Output: BMI standard penulisan: penggunaan input	BMI = weight ÷ (height x height) display BMI counter = counter + 1 end while Stop Note: To ensure the loops are repeated for 5	while (counter < 5) T read weight, height BMI = weight ÷ (height x height)
dalam proses dengan pernyataan "based on (input)"	times: -if the counter starts with 0, the condition is while (counter < 5) -if the counter starts with 1, the condition is while (counter ≤ 5) @ while (counter < 6)	counter = counter + 1

Problem statement 8 (Repetition control structure) - Counter controlled

Calculate the **average** BMI of five students.

IPO model

Input: weight, height

Process: Repeat to calculate total BMI for five

students based on weight and height.

Calculate the average BMI based on total

BMI.

Output: average BMI of five students

```
Start
  counter = 1
  totalBMI = 0
  while (counter <= 5)
    Read weight, height
    BMI = weight / (height x height)
    totalBMI = totalBMI + BMI
    counter = counter + 1
  end while
  averageBMI = totalBMI/5
  Print averageBMI
Stop</pre>
```


Flowchart example 8

```
Start
  counter = 1
  totalBMI = 0
  while (counter <= 5)
     Read weight, height
     BMI = weight / (height x height)
     totalBMI = totalBMI + BMI
     counter = counter + 1
  end while
  averageBMI = totalBMI/5
  Print averageBMI
Stop
```


Repetition: Sentinel controlled

Problem statement 9 (Sentinel controlled)

The program calculates BMI of persons and stops when the user enters 0.

IPO Analysis	Pseudocode	Flowchart
Input: option, weight, height for x times until option equal to 0 Process: Repeat calculate BMI for x times until option equal to 0	read option while (option ≠ 0) read weight, height BMI = weight ÷ (height x height) display BMI read option end while	Start read choice while (choice ≠ 0) T read weight, height
Output: BMI for x times until option equal to 0	Stop	BMI = weight ÷ (height x height) display BMI read choice

Problem statement 9 (Sentinel controlled) (Other approach for IPO)

The program calculates BMI of persons and stops when the user enters 0.

IPO Analysis	Pseudocode	
Input :	Start	
option, weight, height	read option	
	while (option ≠ 0)	
Process:	read weight, height	
Repeat calculate BMI based on	BMI = weight ÷ (height x	
weight and height until option	height)	
equal to 0 (remove for statement)	display BMI	
	read option	
Output :	end while	
BMI	Stop (indentation)	

PENULISAN CONDITION

^{**}statement while (option not equal 0) dalam bentuk ayat juga boleh diterima dalam pseudocode

^{**} statement coding !=, ==, "A" boleh diterima

Pseudocode example 10 (Repetition control structure) - Sentinel controlled

Calculate the total of several numbers entered by the user and end the calculation when the user enters 0.

IPO model

Input: number

Process: Repeat to calculate total of several

numbers based number until number

entered is 0. Output : total

```
Start

total = 0

Read number

while (number != 0)

total = total + number

Read number

end while

Print total

Stop
```


Flowchart example 10

```
Start

total = 0

Read number

while (number != 0)

total = total + number

Read number

end while

Print total

Stop
```


Topic 3: Define algorithm, flowchart and pseudocode

Based on the definition of pseudocode and flowchart, identify the type of control structure based on the following statements.

Statement	Control Structure?
i) Sam wants a program that displays the number of seconds it takes for a baseball to travel a specified distance at a specified speed.	
ii) Mr. Tan has a car rental business in Langkawi. Customers will pay a base fee according to the size of car rented. Small size (S) is RM50, medium size (M) is RM80 and large size (L) is RM100 per day.	
iii) The staff of HEP Unit need to find the total of module 1, module 2 and module 3 students who have attended the Local Rule Seminar. The program should also find the percentage of attendent for each module. The total of the participants are 100 students.	