

Topic 2: Problem Analysis

Learning Outcomes:

(a) Define the Input-Process-Output (IPO) model (1 hour)

RECAP:

- Problem analysis is the first step in problem solving process.
- Programmers use input, process and output (IPO model) to organize and summarize the results of the given problem.

IPO Model

The Input-Process-Output (IPO) Model is an approach to describe and visualize the input, process and output to solve the given problem.

Problem Analysis

Problem analysis is the activities of identifying

- input
- process and/or condition (if any)
- output

from the problem scenario.

Example of problem scenarios:

- o Find the area of a rectangle given width and height
- o Find the area of a circle
- o Calculate the sum of two numbers

IPO Model Description

INPUT	PROCESS	OUTPUT
Input is the value entered/inserted by user	Process is the manipulation (arithmetic/logical comparison) of input to produce output. Print is not a process.	Output is the expected result asked in the problem statement/ question.
Keywords : input, enter, read, get, from the problem statements	Keywords : calculate, compute, count, determine, find, check, compare, if, else, or, otherwise, repeat, times, while, loop, until, as long as from the problem statements	Keywords: display, print, show, convey, find from the problem statements
represented by a descriptive name (noun)	Represented by a verb that involves sequence, selection and repetition control structure process	represented by a descriptive name (noun) or message ("")
Eg: name, number, price, width, height, weight	Eg: calculate the sum of two numbers, calculate the area of a rectangle, determine the average mark based on two quizzes, repeat calculating total mark of 10 students	Eg: sum, total, area, average, "Pass", "Hello world"

Steps to create IPO Model

- 1. Analyze the given problem
- 2. Determine the goal <u>Output</u>
- 3. Determine the items needed to achieve that goal <u>Input</u>
- 4. Determine activity that takes place to achieve the goal <u>Process</u>

Always search first for the Output.

Topic 2: Problem Analysis

Learning Outcomes:

(b) Identify input, process, and output in the given scenarios. (1 hour)

COMPUTER PROGRAMMING

IPO Model

Calculate and display sum of three numbers.		
INPUT	PROCESS	OUTPUT
number1, number2, number3	Calculate Sum based on number1, number2 and number3 or Calculate Sum based on three numbers	Sum

Problem

LECTURE NOTES

Conclusion

Create an IPO model (refer example below)

Find the area of a rectangle given width and height			statement
INPUT	PROCESS	OUTPUT	IPO chart /
width, height	Calculate area of rectangle based on width and height	area of rectangle	diagram

Topic 2: Problem Analysis

Learning Outcomes: (1 hour)

(d) Identify sequence control structure.

Topic 2: Problem Analysis

Control structure.

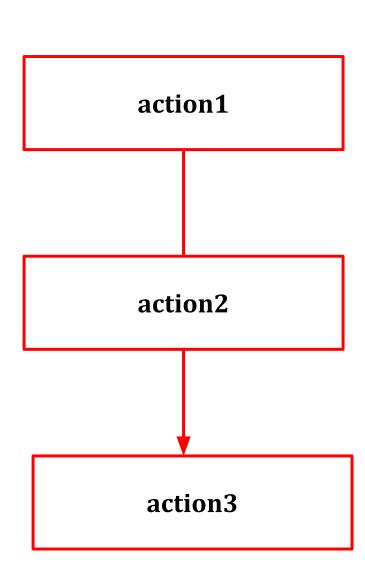
A control structure is a block of programming that analyzes variables and chooses a direction in which to go based on given parameters. It shows the logical order of program instructions.

In 1996, two researchers, C. Bohm, and G. Jacopini, demonstrated that any algorithm can be described using only three (3) control structures:

- 1. Sequence
- 2. Selection
- 3. Repetition

Topic 2: Problem Analysis

Sequence Control Structure Definition


A series of actions that are sequentially executed in the order they are written.

(example: Calculate sum of two numbers)

Topic 2: Problem Analysis

- A series of actions that are sequentially executed in the order they are written. (example: Calculate the sum of two numbers)
- A sequence control structure is a series of actions that are sequentially executed in the order they are written in an algorithm. (represented by rectangle shape)
- Performs statements one after another in sequence
- All actions will be executed sequentially, none will be skipped.
- Actions can be input, process, or output.

Topic 2: Problem Analysis

IPO Mo	odel <i>General Format</i>	Pseudocode General Format	Flowchart General Format
Input	List all required <i>input,</i> separated by comma	Start action1 action2	
Process	Calculate output based on input *Explanation of how to get output based on the input entered *No formula in process	action3 action n Stop	action1 action2 action3
Output	List all <i>output,</i> separated by comma		

Topic 2: Problem Analysis

Example 1: The program will find the square of a given number.

Problem Analysis/ IPO Model

Input: number

Process : Calculate *square* based on *number*

Output : square

Topic 2: Problem Analysis

Example 2: Identify the input, process and output for the given problem statement.

The program will calculate average of 5 test marks

Input:

Process:

Output :

Topic 2: Problem Analysis

Example 2: Identify the input, process and output for the given problem statement.

The program will calculate average of 5 test marks

Input: test1, test2, test3, test4, test5

Process: Calculate average based on test1, test2, test3, test4, test5

Output : average

Topic 2: Problem Analysis

Exercise 1: Identify the input, process and output for the given problem statement.

Given the Koala Water Park entrance ticket rates as shown below:

Ticket price for adult : RM 23.50

Ticket price for children : RM 18.90

A program allows a user to key in the number of family members based on the criteria above, and then calculate the total ticket price for a family.

Topic 2: Problem Analysis

Exercise 2: Identify the input, process and output for the given problem statement.

The height based on arm span can be estimated by using the following equation: Height = $0.87 \times arm span + 20.54$.

Estimate height from the arm span of a person.

Topic 2: Problem Analysis

Exercise 3: Identify the input, process and output for the given problem statement.

Given an airplane's acceleration a and take-off speed v, you can compute the minimum runway length needed for an airplane to take off using the following formula:

A program prompts the user to enter v in meters/second (m/s) and the acceleration (a) in meters/second squared (m/s2) and displays the minimum runway length. Identify the type of control structure and IPO.

Here is a sample run:

Enter speed and acceleration: 60 3.5

The minimum runway length for this airplane is 514.286

Topic 2: Problem Analysis

Exercise 4: Identify the input, process and output for the given problem statement.

Mr Marqueen takes a car loan. The interest rate fixed by the bank is 4% per year, which means he has to pay the interest of 4% of the loan every year. He is allowed to pay the total of his loan plus the interest by monthly installment. Calculate the total amount that he has to pay to the bank and the monthly payment that he has to make.

Topic 2: Problem Analysis (1 hour)

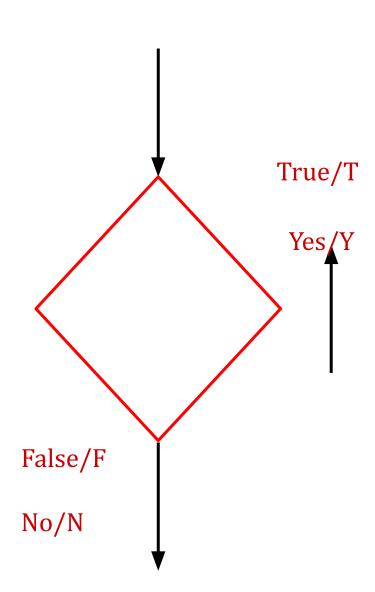
Learning Outcomes:

(f) identify selection control structure

Topic 2: Problem Analysis

Selection Control Structure

Decide which statement(s) to execute based on a condition.


Defines two courses of action depending on the outcome of a condition.

(example: Print "Pass" or "Fail" based on grade entered)

Topic 2: Problem Analysis

- The selection control structure performs an action(s) based on a certain condition
- In pseudocode, selection will be represented using the **if** statement
- In the flowchart, the selection will be represented using decision symbol (represented by diamond shape)

Topic 2: Problem Analysis

There are three (3) types of selection control structure:

- 1. Single Selection
- 2. Dual Selection
- 3. Multiple Selection

Topic 2: Problem Analysis

In **Single Selection**, the if statement performs an action if the specified condition (Boolean expression) is true. If the condition is false, nothing is done.

if statement:

Checks a condition to perform action(s)

If condition is True (T), perform actions(s)

If condition is False (F), skips it (i.e. perform nothing)

Topic 2: Input, Process, Output

IPO Ana	alysis General Format	Pseudocode General Format	Flowchart General Format
Input	List all required <i>input,</i> separated by comma	action(s)	
Process	Determine output based on input *Explanation of how to get output based on the input entered *No formula in process	Note: end if used to indicate the end of an if block. The condition (Boolean	if (condition) T action(s)
Output	TrueOutput or no output	expression) must be written in bracket().	

Topic 2: Problem Analysis

Example 1: The program will display "A" if mark entered is greater or equal to 80

IPO Analysis	Example Pseudocode	Example Flowchart
Input: mark Process: Determine "A" or no output based on mark Output: "A" or no output	read mark if (mark ≥ 80) display "A" end if Stop	read mark T display "A" Stop

Topic 2: Problem Analysis

In **Dual Selection**, if the Boolean expression evaluates to true, the statement(s) for the true case is executed; otherwise, the statement(s) for the false case are executed instead.

if ... else statement:

Check one (1) condition to choose between two (2) actions

If the condition is True (T), perform action1, otherwise (if condition is False (F)), perform action2

Topic 2: Problem Analysis

IPO Ana	alysis General Format	Pseudocode General Format	Flowchart General Format
Input	List all required <i>input</i> , separated by comma	action1	
Process	Determine TrueOutput or FalseOutput based on input *No formula in process	else action2 end if Note: end if is used to indicate the end of	if (condition) F action2
Output	TrueOutput or FalseOutput	expression) must be written in bracket().	

Topic 2: Problem Analysis

Example 2: The program will display grade "A" if the mark entered is greater or equal to 80 or grade "B" if the mark entered is less than 80

IPO Analysis	Example Pseudocode	Example Flowchart
Input : mark	Start read mark	Start
Process: Determine "A" or "B" based on mark	if (<i>mark</i> ≥ 80) display "A"	read mark
or Determine <i>grade</i> based on <i>mark</i>	else display "B" end if	f (mark ≥ 80) T display "A"
	Stop	display "B"
Output : "A" or "B"		Stop

Topic 2: Problem Analysis

In **Multiple Selection**. conditions will be checked one by one, when a condition evaluates to true, perform the true case and stop checking the rest.

if ... else if...else statement:

Checks many conditions to choose between many actions

Condition will be checked one by one

When a condition is True, perform the action and stop checking the rest.

Note: exclude nested selection

Topic 2: Problem Analysis

IPO A	nalysis General Format	Pseudocode General Format	Flowchart General Format
Input	List all required <i>input,</i> separated by comma	if (condition1) action1	Start
Process	Determine (write all possible output) based on input *No formula in process	else if (condition2) action2 else if (condition n) action n else last action	if (condition 1) F else if (condition 2) action 2
Output	List all possible output, separated by the word or	last action end if Note: end if used to indicate the end of an if block. The condition (Boolean expression) must be written in bracket().	else if (condition n) F last action Stop

Topic 2: Problem Analysis

Example 3: The program will display grade "A" if mark entered is greater or equal to 80 or grade "B" if mark entered is in between 70 to 79 or grade "C" if mark entered is less than 70

IPO Analysis	Example Pseudocode	Example Flowchart
Input : mark	Start read <i>mark</i> if (<i>mark</i> ≥ 80)	Start read mark
Process: Determine "A" or "B" or "C" based on mark or Determine grade based on mark	display "A" else if (mark ≥ 80) display "B" else display "C"	if (mark ≥ 80) F else if (mark ≥ 70) display "B"
Output :"A" or "B" or "C"	end if Stop	display "C" Stop

Topic 2: Problem Analysis

Exercise 1: Identify the input, process and output for the given problem statement.

Print the message "You are entitled to vote" for a person whose age is above 18

Input:

Process:

Output

Topic 2: Problem Analysis

Exercise 2: Identify the input, process and output for the given problem statement.

A program will calculate age of a person's. If the age of the person is above 55, then the program will print "Retired", otherwise, the program will print "Still working".

Input:

Process:

Output :

Topic 2: Problem Analysis

Exercise 3: Identify the input, process and output for the given problem statement.

The program will compare two numbers and display either message "num1 is greater than num2" or message "num2 is greater than num1"

Input:

Process:

Topic 2: Problem Analysis

Exercise 4: Identify the input, process and output for the given problem statement.

User enters weight and height. Calculate BMI and print "Overweight" if BMI i> 25.0 or print "Normal" if BMI > 18, other wise print "Underweight".

Input:

Process:

Topic 2: Problem Analysis

Learning Outcomes:

(h) identify repetition control structure. (1 hour)

Repetition also known as looping, iteration

Topic 2: Problem Analysis

Specifies a block of one or more statements that are repeatedly executed until a condition is satisfied

- 2 types of repetition:
- 1. Counter-controlled (E.g: < 5)
- 2. Sentinel-controlled (A value that indicates the end of repetition process) E.g- "Do you want to continue(Y/N)?"

In pseudocode, repetition will be represented using the keyword **while** in flowchart, the repetition structure will be controlled using decision symbol.

Topic 2: Problem Analysis (Approach 1)

In **Counter-Controlled Repetition**, the number of loops that need to be executed is known (either specified in the question or determined by the user), and it depends on the value specified in the condition.

IPO Analysis General Format			
Input	input for times		
Process	Repeat calculate output based on input for times		
Output	output for times		

Topic 2: Problem Analysis (Approach 2)

In **Counter-Controlled Repetition**, the number of loops that need to be executed is known (either specified in the question or determined by the user), and it depends on the value specified in the condition.

IPO Analysis General Format				
Input	input			
Process	Repeat calculate <i>output</i> based on input for times			
Output	output			

Topic 2: Problem Analysis (Approach 1)

Example 1: The program calculate BMI for 5 persons

IPO Analysis

Input

weight, height for 5 times

Process:

Repeat calculate BMI based on weight and height for 5 times

Output:

BMI for 5 times

Topic 2: Problem Analysis (Approach 2)

Example 1: The program calculate BMI for 5 persons

IPO Analysis

Input:

weight, height

Process:

Repeat calculate BMI based on weight and height for 5 times

Output:

BMI

Topic 2: Problem Analysis

Sentinel-controlled repetition is sometimes called indefinite repetition because the number of loops to be executed is not known in advance.

It is a repetition procedure for solving a problem by using a sentinel value (also called a signal value, a dummy value or a flag value) to indicate "end of data entry".

Topic 2: Problem Analysis (Approach 1)

IPO Analysis General Format			
Input	input for x times until		
Process	Repeat calculate output based on input until		
Output	output for x times until		

Topic 2: Problem Analysis (Approach 2)

IPO Analysis General Format			
Input	input		
Process	Repeat calculate output based on input until		
Output	output		

Topic 2: Problem Analysis (Approach 1)

Example 2: The program calculates BMI of persons and stops when the user enters 0.

IPO Analysis

Input :

option, weight, height for x times until option equal to 0

Process:

Repeat calculate BMI for x times until option equal to 0

Output:

BMI for x times until option equal to 0

Topic 2: Problem Analysis (Approach 2)

Example 2: The program calculates BMI of persons and stops when the user enters 0.

IPO Analysis

Input :

option, weight, height

Process:

Repeat calculate BMI based on weight and height until option equal to 0

Output:

BMI

Topic 2: Problem Analysis

Exercise 1: The program will calculate sum and average of 5 numbers

Input:

Process:

Topic 2: Problem Analysis

Exercise 2: Program will calculate and print the average for a few numbers entered by user and terminate when 0 is entered

Input:

Process:

Topic 2: Problem Analysis

Exercise 3: This program allows users to repeatedly enter numbers for 10 times. The program will only display numbers that are divisible by 5 and calculate its sum values.

Input:

Process:

Output

Topic 2: Problem Analysis

Exercise 4: Write a program that will calculate and print the age of 10 persons. If the age of the person is above 55, then the program will print "Retired", otherwise, the program will print "Still working".

Input:

Process:

Output

Topic 2: Problem Analysis

Exercise 5: Write a program that reads a character until the character **q** is read. All characters, except **q** are counted and displayed.

Input:

Process:

Topic 2: Problem Analysis

Identify the type of control structure based on the following statements.

Statement	Control Structure
i) Sam wants a program that displays the number of seconds it takes for a baseball to travel a specified distance at a specified speed.	
ii) Mr. Tan has a car rental business in Langkawi. Customers will pay a base fee according to the size of car rented. Small size (S) is RM50, medium size (M) is RM80 and large size (L) is RM100 per day.	
iii) The staff of HEP Unit need to find the total of module 1, module 2 and module 3 students who have attended the Local Rule Seminar. The program should also find the percentage of attendent for each module. The total of the participants are 100 students.	